hNEGEM

Potential of Biomass-based NETPS within Planetary Boundaries

Constanze Werner & Johanna Braun

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 869192.

Beyond Climate Stabilization: Multi-Faceted Impacts of NETPs on Earth System Resilience

Impacts of land-based NETPs on four terrestrial planetary boundaries

Dynamic Vegetation Model LPJmL (Lund-Potsdam-Jena managed Land)

CarbonGPPgross primary productionRaautotrophic respirationNPPnet primary productionRhheterotrophic respirationHcharvestFcfire carbon fluxesCsomsoil organic matter

Water

I	interceprion
Т	transpiration
S	evaporation
erc	percolation
nfil	infiltration
	runoff
Vreturn	return flow of irrigation
Virrig	irrigation water
)	dircharge

Energy PAR

Rn

photosynthetic active radiation net radiation

Nitrogen

BNF Nsom

biological nitrogen fixation nitrogen in soil organic matter

Tropical broadleaved evergreen tree Tropical broadleaved raingreen tree Temperate needle-leaved evergreen tree Temperate broadleaved evergreen tree Temperate broadleaved summergreen tree Boreal needle-leaved evergreen tree Boreal broadleaved summergreen tree Boreal needle-leaved summergreen tree Tropical herbaceous Temperate herbaceous Polar herbaceous Bioenergy tropical tree Bioenergy temperate tree Bioenergy C₄ grass Temperate cereals Rice Maize Tropical cereals Pulses Temperate roots Tropical roots Sunflower Soybean Groundnut Rapeseed Sugar cane

Spatial: 0.5° x 0.5° Temporal: daily prescribed

P

Plantation-based BECCS potentials constrained by planetary boundaries: $30 \rightarrow 1 (\rightarrow 0)$ Gt CO₂/yr

D3.2 on www.negemproject.eu

Note:

- Study on energy crops, residual biomass potential not included
- Global, not local study
- Biomass plantations outside agricultural areas

highF = high fertilization irr = irrigation

- > Future land availability for CDR thus depends on potential reduction in agricultural areas
- Pastures reductions are possible upon large-scale diet changes towards less livestock products, amongst others
- > EAT-Lancet planetary health diet: contributing to both human and planetary health

CDR potentials from rededicating pasture 2 to biomass plantations for BECCS or reforestation

h

D3.7 on www.negemproject.eu

Impacts on freshwater, nitrogen and land-system change boundaries

BECCS

2

Reforestation

- BECCS DC100 scenario under moderate management implies ~50% increase in areas with transgressions of environmental boundaries for nitrogen and water
- In contrast, reforestation scenarios would slightly improve the water and nitrogen status, and significantly improve the status of the land-system change boundary, especially in the tropics
 D3.7 on www.negemproject.eu

Biomass plantations for BECCS on pasture area increasing the pressure on PBs – reforestation alleviating it

- Any conversion of (semi-)natural land for CDR would further undermine terrestrial planetary boundaries and other environmental targets
- Future **land availability for CDR** thus depends on a **potential reduction in pasture area**, which is amongst others possible upon **diet changes** towards less livestock products (e.g. a transition to the EAT-Lancet planetary health diet)
- Rededicating pastures to biomass plantations for BECCS would allow for more CDR (with a higher level of permanence) than reforestation, but could come at the cost of drastic trade-offs with terrestrial PBs, if sustainable management on biomass plantations cannot be ensured globally.
- CDR from **reforestation** on pastures is reversible, saturates over time and **is less efficient per area**, thus requiring more ambitious diet changes to reach similar CDR rates as BECCS. It would however allow to achieve **multiple sustainability targets**, by simultaneously contributing to both **climate stabilization and nature restoration**.

3 Land-and calorie neutral PyCCS without additional pressures on planetary boundaries

PyCCS = pyrogenic carbon capture and storage

3 Exploring the operation space for land- and calorie-neutral PyCCS

Werner et al. (2023) in review

3 Exploring the operation space for land- and calorie-neutral PyCCS

- LCN-PyCCS may contribute to climate stabilization without further pressures on land resources and food security.
- NETP co-benefits (i.e. yield increases in LCN-PyCCS) are worth considering for the assessment of land-constrained NETP deployment
- Research and practice should aim for developing the best biochar application achievable under field-specific conditions to maximize the potential.
- The assessment of biomass-based NETPs requires elaborate models/databases on residue and waste use large-scale deployment of PyCCS should not rely on purpose-grown biomass (especially as it is the advantage of PyCCS that it can be adapted to diverse systems)

hNEGEM

Thank you!

@NEGEMProject info@negemproject.eu www.negemproject.eu

Appendix

D3.2: NETP potentials without further transgressing planetary boundaries

1 BECCS potentials constrained by planetary boundaries

00

PB definitions

PB definitions						
Earth System Process	Control Variable	Planetary Boundary and sub- global assessment unit	Constraint for biomass plantations	References for control variables and thresholds		
Change in biosphere Integrity	Biodiversity Intactness Index (BII)	90%, assessed by continental biomes	BII reductions by biomass plantations only up to a BII of 90% (in areas where BII is already <90% in the agricultural baseline, no more biomass plantations may be added)	Steffen et al. 2015, Newbold et al. 2016		
Biogeochemical Flows (N cycle)	N in runoff to surface water as proxy for dissolved inorganic N concentrations in surface water	1 mgN I ⁻¹ , assessed at the grid cell level (0.5°x0.5°)	N in runoff from biomass plantations may not lead to additional transgressions of the nitrogen threshold in runoff. In cells where the N threshold is already transgressed in the agricultural baseline, no more biomass plantations may be added.	De Vries et al. 2013, 2021		
Land-System Change	Area of forested land as % of potential forest for each biome	Tropical: 85% Temperate: 50% Boreal: 85% Assessed for each continent and biome	Forest may only be converted to biomass plantations as long as PB thresholds are not transgressed	Steffen et al. 2015		
Freshwater Use	River flow reduction as % of potential mean monthly river flow (MMF)	low-flow months: 25%; intermediate-flow months: 40% high-flow months: 55%,assessed at the grid cell level taking into account upstream-downstream effects	River flow alterations by biomass plantations (from irrigation or changes in runoff) may not lead to additional PB transgressions in any month of the year.	Steffen et al. 2015, Pastor et al. 2014		

D3.2: 1) BECCS potentials constrained by sub-global planetary boundaries

Planetary boundary constraints based on 2015 land use input (averaged for 1986-2015 climate)

D3.2: NETP potentials without further transgressing planetary boundaries

BECCS potentials constrained by planetary boundaries

General approach

000

D3.2: 1) BECCS potentials constrained by sub-global planetary boundaries

a) Constraints for the land availability for biomass plantations

D3.2: 1) BECCS potentials constrained by sub-global planetary boundaries

b) Optimized distribution of biomass plantations under planetary boundary constraints

Maximise net NEs under the constraint that further transgressions of regional planetary boundaries (N, W, BI, LSC) are excluded:

$$netNE_{j}^{p} = H_{j}^{p} * CEff^{p} - LUC_{j}^{p} - N20_{j}^{p}$$
$$\max_{f_{j} \in C_{PB}^{reg}} \left(\sum_{j=1}^{n} \sum_{p} f_{j}^{p} \cdot netNE_{j}^{p} \right)$$

$$\begin{split} H_{j}^{p}: & \text{harvest of biomass plantations} \qquad j = 1...n \text{ (grid cells)} \\ CEff^{p}: & \text{carbon removal efficiency} \\ LUC_{j}^{p}: & \text{land use change emissions and} \\ N20_{j}^{p}: & \text{additional } N_{2}O \text{ emissions (in CO}_{2}\text{-eq}) \\ C_{PB}^{reg}: & \text{fixed regional boundary constraints} \\ f_{j}^{p}: & \text{cell fractions} \\ p \in \{bg_{rf_{hF}}, bg_{rf_{lF}}, bg_{irr_{hF}}, bg_{irr_{lF}}, bt_{rf_{hF}}, bt_{rf_{lF}}, bt_{irr_{hF}}, bt_{irr_{lF}}\} \end{split}$$

Simulation of pasture rededication scenarios in LPJmL

k

CO₂ removal

management			efficiency	
scenario	irrigation	fertilization	B2E	B2L
intensive	irrigation share as for crops, but min. 30% of rededicated cell area	2 x N harvest under unlimited N conditions	0.923	0.669
moderate	irrigation share as for crops, but max. 30% of rededicated cell area	1 x N harvest under unlimited N conditions	0.836	0.603
minimal	0	0	0.795	0.583

2 Impacts on freshwater, nitrogen and land-system change boundaries

BECCS

Parameter ranges LCN-PyCCS

Table S 1. Ranges of the operation space of LCN-PyCCS assessed in this study.

 Ranges	Feautures		References
Management of biomass production			
marginal	LPJmL-simulated yields under rainfed conditions		
moderate	Mid-range between LPJmL-simulated yields under rainfed and irrigated conditions		
Pyrolysis paramters			
 conservative	Herbaceous:	biochar yield = 23% ash-free DM biomass C in biochar = 39%	Woolf et al. (2021)
	Woody:	biochar yield = 27% ash-free DM biomass C in biochar = 43%	
optimized	Herbaceous:	biochar yield = 31% ash-free DM biomass C in biochar = 53%	Schmidt et al. (2019), Grafmüller et al. (2022)
	Woody:	biochar yield = 35% ash-free DM biomass C in biochar = 61%	
Biochar-mediated yield increases			
base	+10% yield increase (+5–15%)		grand mean and confidence interval of yield responses reported in Melo et al. (2022)
enhanced	+20% yield increase		within confidence interval for biochar with a carbon content >30% in Melo et al. (2022)

